If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+4x-9=0
a = 36; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·36·(-9)
Δ = 1312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1312}=\sqrt{16*82}=\sqrt{16}*\sqrt{82}=4\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{82}}{2*36}=\frac{-4-4\sqrt{82}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{82}}{2*36}=\frac{-4+4\sqrt{82}}{72} $
| 4a+2=4a+9 | | 4x²=32 | | (2x^2-25)=(3x^2+60) | | 13x=-2x-5 | | 3.5=5.3-0.3x | | -24+12=2(d-3)+22 | | 10n-17=12n-4 | | 4=u+7 | | X+10/2=7x-7 | | -151=-2x+5(6x+9) | | 1/6a-1/2=1/3 | | -25=4y=35 | | 0=(x+15)(x-13) | | 4d+6=52 | | 18=7v-v | | -6b-12=-3b | | 6y+18=-5(y-8) | | 3x+4=2{x+8} | | -4x+2=8x-8 | | 5w-14=26 | | 2-(a+3)+5a=15 | | 3x-2+4x-18+x=180 | | 5x−(3x+2)=1 | | 72=3w+5w | | 4K+20=8k+8 | | 40=8r;5 | | -9.3=d–3.4 | | X(2x+200)=40,000 | | 3.92-(0.2x+1.96)=0.4x | | 6a+10=a | | 46-3b=-23 | | 10/3+1/4=g |